skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Isayev, Olexandr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The development of high‐performance elastomers for additive manufacturing requires overcoming complex property trade‐offs that challenge conventional material discovery pipelines. Here, a human‐in‐the‐loop reinforcement learning (RL) approach is used to discover polyurethane elastomers that overcome pervasive stress–strain property tradeoffs. Starting with a diverse training set of 92 formulations, a coupled multi‐component reward system was identified that guides RL agents toward materials with both high strength and extensibility. Through three rounds of iterative optimization combining RL predictions with human chemical intuition, we identified elastomers with more than double the average toughness compared to the initial training set. The final exploitation round, aided by solubility prescreening, predicted twelve materials exhibiting both high strength (>10 MPa) and high strain at break (>200%). Analysis of the high‐performing materials revealed structure‐property insights, including the benefits of high molar mass urethane oligomers, a high density of urethane functional groups, and incorporation of rigid low molecular weight diols and unsymmetric diisocyanates. These findings demonstrate that machine‐guided, human‐augmented design is a powerful strategy for accelerating polymer discovery in applications where data is scarce and expensive to acquire, with broad applicability to multi‐objective materials optimization. 
    more » « less
  2. Identifying thermodynamically stable crystal structures remains a key challenge in materials chemistry. Computational crystal structure prediction (CSP) workflows typically rank candidate structures by lattice energy to assess relative stability. Approaches using self-consistent first-principles calculations become prohibitively expensive, especially when millions of energy evaluations are required for complex molecular systems with many atoms per unit cell. Here, we provide a detailed analysis of our methodology and results from the seventh blind test of crystal structure prediction organized by the Cambridge Crystallographic Data Centre (CCDC). We present an approach that significantly accelerates CSP by training target-specific machine learned interatomic potentials (MLIPs). AIMNet2 MLIPs are trained on density functional theory (DFT) calculations of molecular clusters, herein referred to as n-mers. We demonstrate that potentials trained on gas phase dispersion-corrected DFT reference data of n-mers successfully extend to crystalline environments, accurately characterizing the CSP landscape and correctly ranking structures by relative stability. Our methodology effectively captures the underlying physics of thermodynamic crystal stability using only molecular cluster data, avoiding the need for expensive periodic calculations. The performance of target-specific AIMNet2 interatomic potentials is illustrated across diverse chemical systems relevant to pharmaceutical, optoelectronic, and agrochemical applications, demonstrating their promise as efficient alternatives to full DFT calculations for routine CSP tasks. 
    more » « less
  3. Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts. Certain organic molecular thin films can be transitioned from initially prepared amorphous layers to large-scale crystalline films via abrupt thermal annealing. Ideally, these films crystallize as platelets with long-range-ordered domains on the scale of tens to hundreds of microns. However, other organic molecular thin films may instead crystallize as spherulites or resist crystallization entirely. Organic molecules that have the capability of transforming into a platelet morphology feature both high melting point (Tm) and crystallization driving force (ΔGc). In this work, we employed machine learning (ML) to identify candidate organic materials with the potential to crystallize into platelets by estimating the aforementioned thermal properties. Six organic molecules identified by the ML algorithm were experimentally evaluated; three crystallized as platelets, one crystallized as a spherulite, and two resisted thin film crystallization. These results demonstrate a successful application of ML in the scope of predicting thermal properties of organic molecules and reinforce the principles of Tm and ΔGc as metrics that aid in predicting the crystallization behavior of organic thin films. 
    more » « less
  4. In this work, we combined Deep Docking and free energy MD simulations for the in silico screening and experimental validation for potential inhibitors of leucine rich repeat kinase 2 (LRRK2) targeting the WD40 repeat (WDR) domain. 
    more » « less
  5. A sensitive model captures the reactivity cliffs but overfit to yield outliers. On the other hand, a robust model disregards the yield outliers but underfits the reactivity cliffs. 
    more » « less
  6. De novo design of molecules with targeted properties represents a new frontier in molecule development. Despite enormous progress, two main challenges remain: (i) generating novel molecules conditioned on targeted, continuous property values; (ii) obtaining molecules with property values beyond the range in the training data. To tackle these challenges, we propose a reinforced regressional and conditional generative adversarial network (RRCGAN) to generate chemically valid molecules with targeted HOMO–LUMO energy gap (ΔEH–L) as a proof-of-concept study. As validated by density functional theory (DFT) calculation, 75% of the generated molecules have a relative error (RE) of <20% of the targeted ΔEH–L values. To bias the generation toward the ΔEH–L values beyond the range of the original training molecules, transfer learning was applied to iteratively retrain the RRCGAN model. After just two iterations, the mean ΔEH–L of the generated molecules increases to 8.7 eV from the mean value of 5.9 eV shown in the initial training dataset. Qualitative and quantitative analyses reveal that the model has successfully captured the underlying structure–property relationship, which agrees well with the established physical and chemical rules. These results present a trustworthy, purely data-driven methodology for the highly efficient generation of novel molecules with different targeted properties. 
    more » « less